Papers
Topics
Authors
Recent
2000 character limit reached

Sparse matrices for weighted sparse recovery

Published 4 Apr 2016 in math.NA, cs.CC, cs.IT, math.IT, and stat.CO | (1604.01067v2)

Abstract: We derived the first sparse recovery guarantees for weighted $\ell_1$ minimization with sparse random matrices and the class of weighted sparse signals, using a weighted versions of the null space property to derive these guarantees. These sparse matrices from expender graphs can be applied very fast and have other better computational complexities than their dense counterparts. In addition we show that, using such sparse matrices, weighted sparse recovery with weighted $\ell_1$ minimization leads to sample complexities that are linear in the weighted sparsity of the signal and these sampling rates can be smaller than those of standard sparse recovery. Moreover, these results reduce to known results in standard sparse recovery and sparse recovery with prior information and the results are supported by numerical experiments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.