Papers
Topics
Authors
Recent
2000 character limit reached

Nonparametric Conditional Density Estimation in a High-Dimensional Regression Setting

Published 2 Apr 2016 in stat.ME | (1604.00540v1)

Abstract: In some applications (e.g., in cosmology and economics), the regression E[Z|x] is not adequate to represent the association between a predictor x and a response Z because of multi-modality and asymmetry of f(z|x); using the full density instead of a single-point estimate can then lead to less bias in subsequent analysis. As of now, there are no effective ways of estimating f(z|x) when x represents high-dimensional, complex data. In this paper, we propose a new nonparametric estimator of f(z|x) that adapts to sparse (low-dimensional) structure in x. By directly expanding f(z|x) in the eigenfunctions of a kernel-based operator, we avoid tensor products in high dimensions as well as ratios of estimated densities. Our basis functions are orthogonal with respect to the underlying data distribution, allowing fast implementation and tuning of parameters. We derive rates of convergence and show that the method adapts to the intrinsic dimension of the data. We also demonstrate the effectiveness of the series method on images, spectra, and an application to photometric redshift estimation of galaxies.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.