Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improving SAT Solvers via Blocked Clause Decomposition

Published 2 Apr 2016 in cs.LO and cs.AI | (1604.00536v1)

Abstract: The decision variable selection policy used by the most competitive CDCL (Conflict-Driven Clause Learning) SAT solvers is either VSIDS (Variable State Independent Decaying Sum) or its variants such as exponential version EVSIDS. The common characteristic of VSIDS and its variants is to make use of statistical information in the solving process, but ignore structure information of the problem. For this reason, this paper modifies the decision variable selection policy, and presents a SAT solving technique based on BCD (Blocked Clause Decomposition). Its basic idea is that a part of decision variables are selected by VSIDS heuristic, while another part of decision variables are selected by blocked sets that are obtained by BCD. Compared with the existing BCD-based technique, our technique is simple, and need not to reencode CNF formulas. SAT solvers for certified UNSAT track can apply also our BCD-based technique. Our experiments on application benchmarks demonstrate that the new variables selection policy based on BCD can increase the performance of SAT solvers such as abcdSAT. The solver with BCD solved an instance from the SAT Race 2015 that was not solved by any solver so far. This shows that in some cases, the heuristic based on structure information is more efficient than that based on statistical information.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.