Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian density regression for discrete outcomes

Published 31 Mar 2016 in stat.ME | (1603.09706v4)

Abstract: We develop Bayesian models for density regression with emphasis on discrete outcomes. The problem of density regression is approached by considering methods for multivariate density estimation of mixed scale variables, and obtaining conditional densities from the multivariate ones. The approach to multivariate mixed scale outcome density estimation that we describe represents discrete variables, either responses or covariates, as discretised versions of continuous latent variables. We present and compare several models for obtaining these thresholds in the challenging context of count data analysis where the response may be over- and/or under-dispersed in some of the regions of the covariate space. We utilise a nonparametric mixture of multivariate Gaussians to model the directly observed and the latent continuous variables. The paper presents a Markov chain Monte Carlo algorithm for posterior sampling, sufficient conditions for weak consistency, and illustrations on density, mean and quantile regression utilizing simulated and real datasets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.