Papers
Topics
Authors
Recent
Search
2000 character limit reached

Slow recurrent regimes for a class of one-dimensional stochastic growth models

Published 31 Mar 2016 in math.PR | (1603.09702v2)

Abstract: We classify the possible behaviors of a class of one-dimensional stochastic recurrent growth models. In our main result, we obtain nearly optimal bounds for the tail of hitting times of some compact sets. If the process is an aperiodic irreducible Markov chain, we determine whether it is null recurrent or positive recurrent and in the latter case, we obtain a subgeometric convergence of its transition kernel to its invariant measure. We apply our results in particular to state-dependent Galton-Watson processes and we give precise estimates of the tail of the extinction time.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.