Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards co-designed optimizations in parallel frameworks: A MapReduce case study (1603.09679v1)

Published 31 Mar 2016 in cs.DC

Abstract: The explosion of Big Data was followed by the proliferation of numerous complex parallel software stacks whose aim is to tackle the challenges of data deluge. A drawback of a such multi-layered hierarchical deployment is the inability to maintain and delegate vital semantic information between layers in the stack. Software abstractions increase the semantic distance between an application and its generated code. However, parallel software frameworks contain inherent semantic information that general purpose compilers are not designed to exploit. This paper presents a case study demonstrating how the specific semantic information of the MapReduce paradigm can be exploited on multicore architectures. MR4J has been implemented in Java and evaluated against hand-optimized C and C++ equivalents. The initial observed results led to the design of a semantically aware optimizer that runs automatically without requiring modification to application code. The optimizer is able to speedup the execution time of MR4J by up to 2.0x. The introduced optimization not only improves the performance of the generated code, during the map phase, but also reduces the pressure on the garbage collector. This demonstrates how semantic information can be harnessed without sacrificing sound software engineering practices when using parallel software frameworks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.