Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Minkowski dimension and explicit tube formulas for $p$-adic fractal strings (1603.09409v4)

Published 30 Mar 2016 in math-ph and math.MP

Abstract: The local theory of complex dimensions describes the oscillations in the geometry (spectra and dynamics) of fractal strings. Such geometric oscillations can be seen most clearly in the explicit volume formula for the tubular neighborhoods of a $p$-adic fractal string $\mathcal{L}_p$, expressed in terms of the underlying complex dimensions. The general fractal tube formula obtained in this paper is illustrated by several examples, including the nonarchimedean Cantor and Euler strings. Moreover, we show that the Minkowski dimension of a $p$-adic fractal string coincides with the abscissa of convergence of the geometric zeta function associated with the string, as well as with the asymptotic growth rate of the corresponding geometric counting function. The proof of this new result can be applied to both real and $p$-adic fractal strings and hence, yields a unifying explanation of a key result in the theory of complex dimensions for fractal strings, even in the archimedean (or real) case.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.