Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Large sample behaviour of high dimensional autocovariance matrices (1603.09145v1)

Published 30 Mar 2016 in math.ST and stat.TH

Abstract: The existence of limiting spectral distribution (LSD) of $\hat{\Gamma}_u+\hat{\Gamma}_u*$, the symmetric sum of the sample autocovariance matrix $\hat{\Gamma}_u$ of order $u$, is known when the observations are from an infinite dimensional vector linear process with appropriate (strong) assumptions on the coefficient matrices. Under significantly weaker conditions, we prove, in a unified way, that the LSD of any symmetric polynomial in these matrices such as $\hat{\Gamma}_u+\hat{\Gamma}_u*$, $\hat{\Gamma}_u\hat{\Gamma}_u*$, $\hat{\Gamma}_u\hat{\Gamma}_u+\hat{\Gamma}_k\hat{\Gamma}_k^$ exist. Our approach is through the more intuitive algebraic method of free probability in conjunction with the method of moments. Thus, we are able to provide a general description for the limits in terms of some freely independent variables. All the previous results follow as special cases. We suggest statistical uses of these LSD and related results in order determination and white noise testing.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.