Partial Convergence of Heterogeneous Hegselmann-Krause Opinion Dynamics (1603.08099v1)
Abstract: In opinion dynamics, the convergence of the heterogeneous Hegselmann-Krause (HK) dynamics has always been an open problem for years which looks forward to any essential progress. In this short note, we prove a partial convergence conclusion of the general heterogeneous HK dynamis. That is, there must be some agents who will reach static states in finite time, while the other opinions have to evolve between them with a minimum distance if all the opinions does not reach consensus. And this result leads to the convergence of two special case of heterogeneous HK dynamics: the minimum confidence threshold is large enough, or the initial opinion difference is small enough.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.