Pattern formation in a two-component reaction-diffusion system with delayed processes on a network (1603.07122v1)
Abstract: Reaction-diffusion systems with time-delay defined on complex networks have been studied in the framework of the emergence of Turing instabilities. The use of the Lambert W-function allowed us get explicit analytic conditions for the onset of patterns as a function of the main involved parameters, the time-delay, the network topology and the diffusion coefficients. Depending on these parameters, the analysis predicts whether the system will evolve towards a stationary Turing pattern or rather to a wave pattern associated to a Hopf bifurcation. The possible outcomes of the linear analysis overcome the respective limitations of the single-species case with delay, and that of the classical activator-inhibitor variant without delay. Numerical results gained from the Mimura-Murray model support the theoretical approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.