Papers
Topics
Authors
Recent
2000 character limit reached

Wannier functions and Z_2 invariants in time-reversal symmetric topological insulators

Published 22 Mar 2016 in math-ph, cond-mat.mes-hall, and math.MP | (1603.06752v2)

Abstract: We provide a constructive proof of exponentially localized Wannier functions and related Bloch frames in 1- and 2-dimensional time-reversal symmetric (TRS) topological insulators. The construction is formulated in terms of periodic TRS families of projectors (corresponding, in applications, to the eigenprojectors on an arbitrary number of relevant energy bands), and is thus model-independent. The possibility to enforce also a TRS constraint on the frame is investigated. This leads to a topological obstruction in dimension 2, related to $\mathbb{Z}_2$ topological phases. We review several proposals for $\mathbb{Z}_2$ indices that distinguish these topological phases, including the ones by Fu--Kane [Phys. Rev. B 74 (2006), 195312], Prodan [Phys. Rev. B 83 (2011), 235115], Graf--Porta [Commun. Math. Phys. 324 (2013), 851] and Fiorenza--Monaco--Panati [Commun. Math. Phys., in press]. We show that all these formulations are equivalent. In particular, this allows to prove a geometric formula for the the $\mathbb{Z}_2$ invariant of 2-dimensional TRS topological insulators, originally indicated in [Phys. Rev. B 74 (2006), 195312], which expresses it in terms of the Berry connection and the Berry curvature.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.