On the Sign Changes of a Weighted Divisor Problem (1603.04977v2)
Abstract: Let $S\big(x; \frac{a_1}{q_1}, \frac{a_2}{q_2}\big)=\mathop{{\sum}'}_{mn\leq x} \cos\big(2\pi m\frac{a_1}{q_1}\big)\sin\big(2\pi n\frac{a_2}{q_2}\big)$ with $x\geq q_1q_2, 1\leq a_i\leq q_i$, and $(a_i, q_i)=1$ ($i=1, 2$). We study the sign changes of $S\big(x; \frac{a_1}{q_1}, \frac{a_2}{q_2}\big)$, and prove that for a sufficiently large constant $C$, $S\big(x; \frac{a_1}{q_1}, \frac{a_2}{q_2}\big)$ changes sign in the interval $[T,T+C\sqrt{T}]$ for any large $T$. Meanwhile, we show that for a small constant $c'$, there exist infinitely many subintervals of length $c'\sqrt{T}\log{-7}T$ in $[T,2T]$ where $\pm S\big(t; \frac{a_1}{q_1}, \frac{a_2}{q_2}\big)> c_5 (q_1q_2)\frac{3}{4}t\frac{1}{4}$ always holds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.