Papers
Topics
Authors
Recent
2000 character limit reached

A Practical Approach to the Hamilton-Jacobi Formulation of Holographic Renormalization

Published 14 Mar 2016 in hep-th and gr-qc | (1603.04485v3)

Abstract: We revisit the subject of holographic renormalization for asymptotically AdS spacetimes. For many applications of holography, one has to handle the divergences associated with the on-shell gravitational action. The brute force approach uses the Fefferman-Graham (FG) expansion near the AdS boundary to identify the divergences, but subsequent reversal of the expansion is needed to construct the infinite counterterms. While in principle straightforward, the method is cumbersome and application/reversal of FG is formally unsatisfactory. Various authors have proposed an alternative method based on the Hamilton-Jacobi equation. However, this approach may appear to be abstract, difficult to implement, and in some cases limited in applicability. In this paper, we clarify the Hamilton-Jacobi formulation of holographic renormalization and present a simple algorithm for its implementation to extract cleanly the infinite counterterms. While the derivation of the method relies on the Hamiltonian formulation of general relativity, the actual application of our algorithm does not. The work applies to any $D$-dimensional holographic dual with asymptotic AdS boundary, Euclidean or Lorentzian, and arbitrary slicing. We illustrate the method in several examples, including the FGPW model, a holographic model of 3d ABJM theory, and cases with marginal scalars such as a dilaton-axion system.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.