Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Grothendieck-type inequality for local maxima

Published 13 Mar 2016 in math.OC and stat.ML | (1603.04064v1)

Abstract: A large number of problems in optimization, machine learning, signal processing can be effectively addressed by suitable semidefinite programming (SDP) relaxations. Unfortunately, generic SDP solvers hardly scale beyond instances with a few hundreds variables (in the underlying combinatorial problem). On the other hand, it has been observed empirically that an effective strategy amounts to introducing a (non-convex) rank constraint, and solving the resulting smooth optimization problem by ascent methods. This non-convex problem has --generically-- a large number of local maxima, and the reason for this success is therefore unclear. This paper provides rigorous support for this approach. For the problem of maximizing a linear functional over the elliptope, we prove that all local maxima are within a small gap from the SDP optimum. In several problems of interest, arbitrarily small relative error can be achieved by taking the rank constraint $k$ to be of order one, independently of the problem size.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.