Papers
Topics
Authors
Recent
2000 character limit reached

Catching Fire via "Likes": Inferring Topic Preferences of Trump Followers on Twitter

Published 9 Mar 2016 in cs.SI | (1603.03099v1)

Abstract: In this paper, we propose a framework to infer the topic preferences of Donald Trump's followers on Twitter. We first use latent Dirichlet allocation (LDA) to derive the weighted mixture of topics for each Trump tweet. Then we use negative binomial regression to model the "likes," with the weights of each topic serving as explanatory variables. Our study shows that attacking Democrats such as President Obama and former Secretary of State Hillary Clinton earns Trump the most "likes." Our framework of inference is generalizable to the study of other politicians.

Citations (49)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.