Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-prover Proof-of-Retrievability

Published 8 Mar 2016 in cs.CR | (1603.02671v1)

Abstract: There has been considerable recent interest in "cloud storage" wherein a user asks a server to store a large file. One issue is whether the user can verify that the server is actually storing the file, and typically a challenge-response protocol is employed to convince the user that the file is indeed being stored correctly. The security of these schemes is phrased in terms of an extractor which will recover the file given any "proving algorithm" that has a sufficiently high success probability. This forms the basis of \emph{proof-of-retrievability} ($\mathsf{PoR}$) systems. In this paper, we study multiple server $\mathsf{PoR}$ systems. We formalize security definitions for two possible scenarios: (i) when a threshold of servers succeed with high enough probability (worst-case) and (ii) when the average of the success probability of all the servers is above a threshold (average-case). We also motivate the study of confidentiality of the outsourced message. We give $\mathsf{M}\mbox{-}\mathsf{PoR}$ schemes which are secure under both these security definitions and provide reasonable confidentiality guarantees even when there is no restriction on the computational power of the servers. We also show how classical statistical techniques used by Paterson, Stinson and Upadhyay (Journal of Mathematical Cryptology: 7(3)) can be extended to evaluate whether the responses of the provers are accurate enough to permit successful extraction. We also look at one specific instantiation of our construction when instantiated with the unconditionally secure version of the Shacham-Waters scheme (Asiacrypt, 2008). This scheme gives reasonable security and privacy guarantee. We show that, in the multi-server setting with computationally unbounded provers, one can overcome the limitation that the verifier needs to store as much secret information as the provers.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.