Multidimensional factorization through helical mapping
Abstract: This paper proposes a new perspective on the problem of multidimensional spectral factorization, through helical mapping: $d$-dimensional ($d$D) data arrays are vectorized, processed by $1$D cepstral analysis and then remapped onto the original space. Partial differential equations (PDEs) are the basic framework to describe the evolution of physical phenomena. We observe that the minimum phase helical solution asymptotically converges to the $d$D semi-causal solution, and allows to decouple the two solutions arising from PDEs describing physical systems. We prove this equivalence in the theoretical framework of cepstral analysis, and we also illustrate the validity of helical factorization through a $2$D wave propagation example and a $3$D application to helioseismology.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.