Papers
Topics
Authors
Recent
Search
2000 character limit reached

Accurate principal component analysis via a few iterations of alternating least squares

Published 5 Mar 2016 in math.NA, cs.NA, and stat.CO | (1603.01765v1)

Abstract: A few iterations of alternating least squares with a random starting point provably suffice to produce nearly optimal spectral- and Frobenius-norm accuracies of low-rank approximations to a matrix; iterating to convergence is unnecessary. Thus, software implementing alternating least squares can be retrofitted via appropriate setting of parameters to calculate nearly optimally accurate low-rank approximations highly efficiently, with no need for convergence.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.