Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Almost invariance of distributions for random walks on groups (1603.01458v2)

Published 4 Mar 2016 in math.GR and math.PR

Abstract: We study the neighborhoods of a typical point $Z_n$ visited at $n$-th step of a random walk, determined by the condition that the transition probabilities stay close to $\mu{*n}(Z_n)$. If such neighborhood contains a ball of radius $C \sqrt{n}$, we say that the random walk has almost invariant transition probabilities. We prove that simple random walks on wreath products of $\mathbb{Z}$ with finite groups have almost invariant distributions. A weaker version of almost invariance implies a necessary condition of Ozawa's criterion for the property $H_{\rm FD}$. We define and study the radius of almost invariance, we estimate this radius for random walks on iterated wreath products and show this radius can be asymptotically strictly smaller than $n/L(n)$, where $L(n)$ denotes the drift function of the random walk. We show that the radius of individual almost invariance of a simple random walk on the wreath product of $\mathbb{Z}2$ with a finite group is asymptotically strictly larger than $n/L(n)$. Finally, we show the existence of groups such that the radius of almost invariance is smaller than a given function, but remains unbounded. We also discuss possible limiting distribution of ratios of transition probabilities on non almost invariant scales.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.