Torsion as a Gauge Field in a Lorentz-Chern-Simons Theory (1603.01332v2)
Abstract: We explore a model of gravity that arises from the consideration of the Chern-Simons form in 2+1 dimensions for a spin connection with a contorsion described by a scalar and a vector field. The effective Lagrangian presents a local Weyl symmetry allowing us to gauge the scalar field to a constant value. From a gauge field theory perspective, it is shown that the vector part of the torsion (related to its trace) is a gauge field for the Weyl group, which allows the interpretation of the torsion as an electromagnetic field. In the gauge of constant scalar field we obtain Chiral Gravity coupled to a Chern-Simons-Proca theory for the vector field, that at the level of equations of motion is equivalent to Topologically Massive Electrodynamics minimally coupled to Chiral Gravity. Electrodynamics and gravity appear here unified as geometrical features of a Riemann-Cartan manifold.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.