Papers
Topics
Authors
Recent
Search
2000 character limit reached

Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities

Published 26 Feb 2016 in math.AP | (1602.08319v2)

Abstract: In this paper we consider a family of Caffarelli-Kohn-Nirenberg interpolation inequalities (CKN), with two radial power law weights and exponents in a subcritical range. We address the question of symmetry breaking: are the optimal functions radially symmetric, or not ? Our intuition comes from a weighted fast diffusion (WFD) flow: if symmetry holds, then an explicit entropy - entropy production inequality which governs the intermediate asymptotics is indeed equivalent to (CKN), and the self-similar profiles are optimal for (CKN). We establish an explicit symmetry breaking condition by proving the linear instability of the radial optimal functions for (CKN). Symmetry breaking in (CKN) also has consequences on entropy - entropy production inequalities and on the intermediate asymptotics for (WFD). Even when no symmetry holds in (CKN), asymptotic rates of convergence of the solutions to (WFD) are determined by a weighted Hardy-Poincar{\'e} inequality which is interpreted as a linearized entropy - entropy production inequality. All our results rely on the study of the bottom of the spectrum of the linearized diffusion operator around the self-similar profiles, which is equivalent to the linearization of (CKN) around the radial optimal functions, and on variational methods. Consequences for the (WFD) flow will be studied in Part II of this work.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.