Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multimodal Emotion Recognition Using Multimodal Deep Learning

Published 26 Feb 2016 in cs.HC, cs.CV, and cs.LG | (1602.08225v1)

Abstract: To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models from multiple physiological signals. For unimodal enhancement task, we indicate that the best recognition accuracy of 82.11% on SEED dataset is achieved with shared representations generated by Deep AutoEncoder (DAE) model. For multimodal facilitation tasks, we demonstrate that the Bimodal Deep AutoEncoder (BDAE) achieves the mean accuracies of 91.01% and 83.25% on SEED and DEAP datasets, respectively, which are much superior to the state-of-the-art approaches. For cross-modal learning task, our experimental results demonstrate that the mean accuracy of 66.34% is achieved on SEED dataset through shared representations generated by EEG-based DAE as training samples and shared representations generated by eye-based DAE as testing sample, and vice versa.

Citations (58)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.