Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Abstain from Binary Prediction (1602.08151v2)

Published 25 Feb 2016 in cs.LG and stat.ML

Abstract: A binary classifier capable of abstaining from making a label prediction has two goals in tension: minimizing errors, and avoiding abstaining unnecessarily often. In this work, we exactly characterize the best achievable tradeoff between these two goals in a general semi-supervised setting, given an ensemble of predictors of varying competence as well as unlabeled data on which we wish to predict or abstain. We give an algorithm for learning a classifier in this setting which trades off its errors with abstentions in a minimax optimal manner, is as efficient as linear learning and prediction, and is demonstrably practical. Our analysis extends to a large class of loss functions and other scenarios, including ensembles comprised of specialists that can themselves abstain.

Citations (8)

Summary

We haven't generated a summary for this paper yet.