Papers
Topics
Authors
Recent
2000 character limit reached

Autonomous navigation for low-altitude UAVs in urban areas

Published 25 Feb 2016 in cs.RO and cs.CV | (1602.08141v1)

Abstract: In recent years, consumer Unmanned Aerial Vehicles have become very popular, everyone can buy and fly a drone without previous experience, which raises concern in regards to regulations and public safety. In this paper, we present a novel approach towards enabling safe operation of such vehicles in urban areas. Our method uses geodetically accurate dataset images with Geographical Information System (GIS) data of road networks and buildings provided by Google Maps, to compute a weighted A* shortest path from start to end locations of a mission. Weights represent the potential risk of injuries for individuals in all categories of land-use, i.e. flying over buildings is considered safer than above roads. We enable safe UAV operation in regards to 1- land-use by computing a static global path dependent on environmental structures, and 2- avoiding flying over moving objects such as cars and pedestrians by dynamically optimizing the path locally during the flight. As all input sources are first geo-registered, pixels and GPS coordinates are equivalent, it therefore allows us to generate an automated and user-friendly mission with GPS waypoints readable by consumer drones' autopilots. We simulated 54 missions and show significant improvement in maximizing UAV's standoff distance to moving objects with a quantified safety parameter over 40 times better than the naive straight line navigation.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.