Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Capacity-Achieving Iterative LMMSE Detection for MIMO-NOMA Systems (1602.07423v1)

Published 24 Feb 2016 in cs.IT and math.IT

Abstract: This paper considers a iterative Linear Minimum Mean Square Error (LMMSE) detection for the uplink Multiuser Multiple-Input and Multiple-Output (MU-MIMO) systems with Non-Orthogonal Multiple Access (NOMA). The iterative LMMSE detection greatly reduces the system computational complexity by departing the overall processing into many low-complexity distributed calculations. However, it is generally considered to be sub-optimal and achieves relatively poor performance. In this paper, we firstly present the matching conditions and area theorems for the iterative detection of the MIMO-NOMA systems. Based on the proposed matching conditions and area theorems, the achievable rate region of the iterative LMMSE detection is analysed. We prove that by properly design the iterative LMMSE detection, it can achieve (i) the optimal sum capacity of MU-MIMO systems, (ii) all the maximal extreme points in the capacity region of MU-MIMO system, and (iii) the whole capacity region of two-user MIMO systems.

Summary

We haven't generated a summary for this paper yet.