Solvable Leibniz algebra with non-Lie and non-split naturally graded filiform nilradical and its rigidity
Abstract: The description of complex solvable Leibniz algebras whose nilradical is a naturally graded filiform algebra is already known. Unfortunately, a mistake was made in that description. Namely, in the case where the dimension of the solvable Leibniz algebra with nilradical $F_n1$ is equal to $n+2$, it was asserted that there is no such algebra. However, it was possible for us to find a unique $(n+2)$-dimensional solvable Leibniz algebra with nilradical $F_n1$. In addition, we establish the triviality of the second group of cohomology for this algebra with coefficients in itself, which implies its rigidity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.