Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Skill Embedding for Personalized Lesson Sequence Recommendation (1602.07029v1)

Published 23 Feb 2016 in cs.LG, cs.AI, and cs.CY

Abstract: Students in online courses generate large amounts of data that can be used to personalize the learning process and improve quality of education. In this paper, we present the Latent Skill Embedding (LSE), a probabilistic model of students and educational content that can be used to recommend personalized sequences of lessons with the goal of helping students prepare for specific assessments. Akin to collaborative filtering for recommender systems, the algorithm does not require students or content to be described by features, but it learns a representation using access traces. We formulate this problem as a regularized maximum-likelihood embedding of students, lessons, and assessments from historical student-content interactions. An empirical evaluation on large-scale data from Knewton, an adaptive learning technology company, shows that this approach predicts assessment results competitively with benchmark models and is able to discriminate between lesson sequences that lead to mastery and failure.

Citations (18)

Summary

We haven't generated a summary for this paper yet.