Papers
Topics
Authors
Recent
Search
2000 character limit reached

An optimal three-point eighth-order iterative method without memory for solving nonlinear equations with its dynamics

Published 23 Feb 2016 in math.NA | (1602.07026v1)

Abstract: We present a three-point iterative method without memory for solving nonlinear equations in one variable. The proposed method provides convergence order eight with four function evaluations per iteration. Hence, it possesses a very high computational efficiency and supports Kung and Traub's conjecture. The construction, the convergence analysis, and the numerical implementation of the method will be presented. Using several test problems, the proposed method will be compared with existing methods of convergence order eight concerning accuracy and basin of attraction. Furthermore, some measures are used to judge methods with respect to their performance in finding the basin of attraction.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.