On the monoid of monotone injective partial selfmaps of $\mathbb{N}^{2}_{\leqslant}$ with cofinite domains and images (1602.06593v3)
Abstract: Let $\mathbb{N}{2}_{\leqslant}$ be the set $\mathbb{N}{2}$ with the partial order defined as the product of usual order $\leq$ on the set of positive integers $\mathbb{N}$. We study the semigroup $\mathscr{P!O}!{\infty}(\mathbb{N}2{\leqslant})$ of monotone injective partial selfmaps of $\mathbb{N}{2}_{\leqslant}$ having cofinite domain and image. We describe properties of elements of the semigroup $\mathscr{P!O}!{\infty}(\mathbb{N}2{\leqslant})$ as monotone partial bijections of $\mathbb{N}{2}_{\leqslant}$ and show that the group of units of $\mathscr{P!O}!{\infty}(\mathbb{N}2{\leqslant})$ is isomorphic to the cyclic group of order two. Also we describe the subsemigroup of idempotents of $\mathscr{P!O}!{\infty}(\mathbb{N}2{\leqslant})$ and the Green relations on $\mathscr{P!O}!{\infty}(\mathbb{N}2{\leqslant})$. In particular, we show that $\mathscr{D}=\mathscr{J}$ in $\mathscr{P!O}!{\infty}(\mathbb{N}2{\leqslant})$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.