Papers
Topics
Authors
Recent
Search
2000 character limit reached

Construction of two-bubble solutions for energy-critical wave equations

Published 21 Feb 2016 in math.AP | (1602.06524v2)

Abstract: We construct pure two-bubbles for some energy-critical wave equations, that is solutions which in one time direction approach a superposition of two stationary states both centered at the origin, but asymptotically decoupled in scale. Our solution exists globally, with one bubble at a fixed scale and the other concentrating in infinite time, with an error tending to 0 in the energy space. We treat the cases of the power nonlinearity in space dimension 6, the radial Yang-Mills equation and the equivariant wave map equation with equivariance class k > 2. The concentrating speed of the second bubble is exponential for the first two models and a power function in the last case.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.