Construction of two-bubble solutions for energy-critical wave equations
Abstract: We construct pure two-bubbles for some energy-critical wave equations, that is solutions which in one time direction approach a superposition of two stationary states both centered at the origin, but asymptotically decoupled in scale. Our solution exists globally, with one bubble at a fixed scale and the other concentrating in infinite time, with an error tending to 0 in the energy space. We treat the cases of the power nonlinearity in space dimension 6, the radial Yang-Mills equation and the equivariant wave map equation with equivariance class k > 2. The concentrating speed of the second bubble is exponential for the first two models and a power function in the last case.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.