Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Asymptotic expansions of the hypergeometric function with two large parameters $-$ application to the partition function of a lattice gas in a field of traps (1602.05146v4)

Published 16 Feb 2016 in math-ph and math.MP

Abstract: The canonical partition function of a two-dimensional lattice gas in a field of randomly placed traps, like many other problems in physics, evaluates to the Gauss hypergeometric function ${}_2F_1(a,b;c;z)$ in the limit when one or more of its parameters become large. This limit is difficult to compute from first principles, and finding the asymptotic expansions of the hypergeometric function is therefore an important task. While some possible cases of the asymptotic expansions of ${}_2F_1(a,b;c;z)$ have been provided in the literature, they are all limited by a narrow domain of validity, either in the complex plane of the variable or in the parameter space. Overcoming this restriction, we provide new asymptotic expansions for the hypergeometric function with two large parameters, which are valid for the entire complex plane of $z$ except for a few specific points. We show that these expansions work well even when we approach the possible singularity of ${}_2F_1(a,b;c;z)$, $|z|=1$, where the current expansions typically fail. Using our results we determine asymptotically the partition function of a lattice gas in a field of traps in the different possible physical limits of few/many particles and few/many traps, illustrating the applicability of the derived asymptotic expansions of the HGF in physics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube