Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal Sample Complexity for Stable Matrix Recovery

Published 13 Feb 2016 in cs.IT and math.IT | (1602.04396v2)

Abstract: Tremendous efforts have been made to study the theoretical and algorithmic aspects of sparse recovery and low-rank matrix recovery. This paper fills a theoretical gap in matrix recovery: the optimal sample complexity for stable recovery without constants or log factors. We treat sparsity, low-rankness, and potentially other parsimonious structures within the same framework: constraint sets that have small covering numbers or Minkowski dimensions. We consider three types of random measurement matrices (unstructured, rank-1, and symmetric rank-1 matrices), following probability distributions that satisfy some mild conditions. In all these cases, we prove a fundamental result -- the recovery of matrices with parsimonious structures, using an optimal (or near optimal) number of measurements, is stable with high probability.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.