Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automorphisms of algebras and Bochner`s property for discrete vector orthogonal polynomials (1602.04343v1)

Published 13 Feb 2016 in math.CA, math-ph, and math.MP

Abstract: We construct new families of discrete vector orthogonal polynomials that have the property to be eigenfunctions of some difference operator. They are extensions of Charlier, Meixner and Kravchuk polynomial systems. The ideas behind our approach lie in the studies of bispectral operators. We exploit automorphisms of associative algebras which transform elementary (vector) orthogonal polynomial systems which are eigenfunctions of a difference operator into other systems of this type. While the extension of Charlier polynomilas is well known it is obtained by different methods. The extension of Meixner polynomial system is new.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.