Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Modeling Human Ad Hoc Coordination (1602.03924v1)

Published 11 Feb 2016 in cs.AI, cs.GT, and cs.MA

Abstract: Whether in groups of humans or groups of computer agents, collaboration is most effective between individuals who have the ability to coordinate on a joint strategy for collective action. However, in general a rational actor will only intend to coordinate if that actor believes the other group members have the same intention. This circular dependence makes rational coordination difficult in uncertain environments if communication between actors is unreliable and no prior agreements have been made. An important normative question with regard to coordination in these ad hoc settings is therefore how one can come to believe that other actors will coordinate, and with regard to systems involving humans, an important empirical question is how humans arrive at these expectations. We introduce an exact algorithm for computing the infinitely recursive hierarchy of graded beliefs required for rational coordination in uncertain environments, and we introduce a novel mechanism for multiagent coordination that uses it. Our algorithm is valid in any environment with a finite state space, and extensions to certain countably infinite state spaces are likely possible. We test our mechanism for multiagent coordination as a model for human decisions in a simple coordination game using existing experimental data. We then explore via simulations whether modeling humans in this way may improve human-agent collaboration.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.