2000 character limit reached
On the existence of infinitely many closed geodesics on non-compact manifolds (1602.03679v2)
Published 11 Feb 2016 in math.DG and math.SG
Abstract: We prove that any complete (and possibly non-compact) Riemannian manifold $M$ possesses infinitely many closed geodesics provided its free loop space has unbounded Betti numbers in degrees larger than the dimension of $M$, and there are no close conjugate points at infinity. Our argument builds on an existence result due to Benci and Giannoni, and generalizes the celebrated theorem of Gromoll and Meyer for closed manifolds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.