Papers
Topics
Authors
Recent
2000 character limit reached

Triplet Similarity Embedding for Face Verification

Published 10 Feb 2016 in cs.CV | (1602.03418v2)

Abstract: In this work, we present an unconstrained face verification algorithm and evaluate it on the recently released IJB-A dataset that aims to push the boundaries of face verification methods. The proposed algorithm couples a deep CNN-based approach with a low-dimensional discriminative embedding learnt using triplet similarity constraints in a large margin fashion. Aside from yielding performance improvement, this embedding provides significant advantages in terms of memory and post-processing operations like hashing and visualization. Experiments on the IJB-A dataset show that the proposed algorithm outperforms state of the art methods in verification and identification metrics, while requiring less training time.

Citations (62)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.