Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Analysis of $l_0$ Norm Constrained Recursive Least Squares Algorithm (1602.03283v1)

Published 10 Feb 2016 in cs.IT, math.IT, nlin.AO, and stat.ME

Abstract: Performance analysis of $l_0$ norm constrained Recursive least Squares (RLS) algorithm is attempted in this paper. Though the performance pretty attractive compared to its various alternatives, no thorough study of theoretical analysis has been performed. Like the popular $l_0$ Least Mean Squares (LMS) algorithm, in $l_0$ RLS, a $l_0$ norm penalty is added to provide zero tap attractions on the instantaneous filter taps. A thorough theoretical performance analysis has been conducted in this paper with white Gaussian input data under assumptions suitable for many practical scenarios. An expression for steady state MSD is derived and analyzed for variations of different sets of predefined variables. Also a Taylor series expansion based approximate linear evolution of the instantaneous MSD has been performed. Finally numerical simulations are carried out to corroborate the theoretical analysis and are shown to match well for a wide range of parameters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Samrat Mukhopadhyay (14 papers)
  2. Bijit Kumar Das (4 papers)
  3. Mrityunjoy Chakraborty (14 papers)