Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EM Based p-norm-like Constraint RLS Algorithm for Sparse System Identification (2312.05829v1)

Published 10 Dec 2023 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, the recursive least squares (RLS) algorithm is considered in the sparse system identification setting. The cost function of RLS algorithm is regularized by a $p$-norm-like ($0 \leq p \leq 1$) constraint of the estimated system parameters. In order to minimize the regularized cost function, we transform it into a penalized maximum likelihood (ML) problem, which is solved by the expectation-maximization (EM) algorithm. With the introduction of a thresholding operator, the update equation of the tap-weight vector is derived. We also exploit the underlying sparsity to implement the proposed algorithm in a low computational complexity fashion. Numerical simulations demonstrate the superiority of the new algorithm over conventional sparse RLS algorithms, as well as regular RLS algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. W. Bajwa, J. Haupt, G. Raz, and R. Nowak, “Compressed channel sensing,” in Proc. CISS, 2008.
  2. R. Tibshirani, “Regression shinkage and selection via the LASSO,” J. Roy. Statist. Soc., 58(1), 267-288, 1996.
  3. D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52, pp. 1289-1306, Apr. 2006.
  4. B. D. Rao and B. Song, “Adaptive filtering algorithms for promoting sparsity,” Proc. ICASSP, vol. 6, pp. VI361-VI364, April 2003.
  5. Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system identification,” ICASSP, 3125-3128, Taiwan, Apr. 2009.
  6. O. Taheri and S. A. Vorobyov, “Sparse channel estimation with ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-norm and reweighted ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-norm penalized least mean squares,” ICASSP, 2011.
  7. Y. Gu, J. Jin, and S. Mei, “l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT Norm constraint LMS algorithm for sparse system identification,” IEEE Signal Process. Lett., 16(9), 774-777, Sep. 2009.
  8. F. Wu and F. Tong, “Gradient optimization p-norm-like constraint LMS algorithm for sparse system estimation,” Signal Processing, 93, 967-971, 2013.
  9. M. L. Aliyu, M. A. Alkassim, and M. S. Salman, “A p𝑝pitalic_p-norm variable step-size LMS algorithm for sparse system identification,” Signal, Image and Video Processing, 1-7, 2014.
  10. L. Weruaga and S. Jimaa, “Exact NLMS algorithm with ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-norm constraint,” IEEE Signal Processing Letters, 22(3), 366-370, Mar. 2015.
  11. D. Angelosante, J. A. Bazerque, and G. B. Giannakis, “Online adaptive estimation of sparse signals: where RLS meets the ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-norm,” IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3436-3447, Jul. 2010.
  12. E. M. Eksioglu, “Sparsity regularised recursive least squares adaptive filtering,” IET Signal Process., 5(5), 480-487, 2011.
  13. E. M. Eksioglu and A. K. Tanc, “RLS algorithm with convex regularization,” IEEE Signal Processing Letters, 18(8), 470-473, Aug. 2011.
  14. B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: The sparse RLS algorithm,” IEEE Trans. Signal Process., 58(8), 4013-4025, Aug. 2010.
  15. M. Figueirado and R. Nowak, “An EM algorithm for wavelet-based image restoration,” IEEE Trans. Image Process., vol. 12, no. 8, pp. 906-916, Aug. 2003.
  16. Z. Liu, Y. Liu, and C. Li, “Distributed sparse recursive least-squares over networks,” IEEE Trans. Signal Process., vol. 62, no. 6, pp. 1386-1395, Mar. 2014.
  17. Y. V. Zakharov and V. H. Nascimento, “DCD-RLS adaptive filters with penalties for sparse identification,” IEEE Trans. Signal Process., vol. 61, no. 12, pp. 3198-3213, Jun. 2013.
  18. X. Hong, J. Gao, and S. Chen, “Zero-attracting recursive least squares algorithms,” IEEE Trans. Vehicular Technology, vol. 66, no. 1, pp. 213-221, Jan. 2017.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shuyang Jiang (15 papers)
  2. Kung Yao (2 papers)

Summary

We haven't generated a summary for this paper yet.