Papers
Topics
Authors
Recent
Search
2000 character limit reached

Classification with Boosting of Extreme Learning Machine Over Arbitrarily Partitioned Data

Published 9 Feb 2016 in cs.LG | (1602.02887v1)

Abstract: Machine learning based computational intelligence methods are widely used to analyze large scale data sets in this age of big data. Extracting useful predictive modeling from these types of data sets is a challenging problem due to their high complexity. Analyzing large amount of streaming data that can be leveraged to derive business value is another complex problem to solve. With high levels of data availability (\textit{i.e. Big Data}) automatic classification of them has become an important and complex task. Hence, we explore the power of applying MapReduce based Distributed AdaBoosting of Extreme Learning Machine (ELM) to build a predictive bag of classification models. Accordingly, (i) data set ensembles are created; (ii) ELM algorithm is used to build weak learners (classifier functions); and (iii) builds a strong learner from a set of weak learners. We applied this training model to the benchmark knowledge discovery and data mining data sets.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.