Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On directional derivatives of Skorokhod maps in convex polyhedral domains (1602.01860v1)

Published 4 Feb 2016 in math.PR

Abstract: The study of both sensitivity analysis and differentiability of the stochastic flow of a reflected process in a convex polyhedral domain is challenging because the dynamics are discontinuous at the boundary of the domain and the boundary of the domain is not smooth. These difficulties can be addressed by studying directional derivatives of an associated extended Skorokhod map, which is a deterministic mapping that takes an unconstrained path to a suitably reflected version. In this work we develop an axiomatic framework for the analysis of directional derivatives of a large class of Lipschitz continuous extended Skorokhod maps in convex polyhedral domains with oblique directions of reflection. We establish existence of directional derivatives at a path whose reflected version satisfies a certain boundary jitter property, and also show that the right-continuous regularization of such a directional derivative can be characterized as the unique solution to a Skorokhod-type problem, where both the domain and directions of reflection vary (discontinuously) with time. A key ingredient in the proof is establishing certain contraction properties for a family of (oblique) derivative projection operators. As an application, we establish pathwise differentiability of reflected Brownian motion in the nonnegative quadrant with respect to the initial condition, drift vector, dispersion matrix and directions of reflection. The results of this paper are also used in subsequent work to establish pathwise differentiability of a much larger class of reflected diffusions in convex polyhedral domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.