Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Design of Geometric Molecular Bonds (1602.01600v4)

Published 4 Feb 2016 in cs.IT, cs.CG, cs.ET, math.IT, and q-bio.MN

Abstract: An example of a nonspecific molecular bond is the affinity of any positive charge for any negative charge (like-unlike), or of nonpolar material for itself when in aqueous solution (like-like). This contrasts specific bonds such as the affinity of the DNA base A for T, but not for C, G, or another A. Recent experimental breakthroughs in DNA nanotechnology demonstrate that a particular nonspecific like-like bond ("blunt-end DNA stacking" that occurs between the ends of any pair of DNA double-helices) can be used to create specific "macrobonds" by careful geometric arrangement of many nonspecific blunt ends, motivating the need for sets of macrobonds that are orthogonal: two macrobonds not intended to bind should have relatively low binding strength, even when misaligned. To address this need, we introduce geometric orthogonal codes that abstractly model the engineered DNA macrobonds as two-dimensional binary codewords. While motivated by completely different applications, geometric orthogonal codes share similar features to the optical orthogonal codes studied by Chung, Salehi, and Wei. The main technical difference is the importance of 2D geometry in defining codeword orthogonality.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.