Papers
Topics
Authors
Recent
2000 character limit reached

Comparative Study of Differentially Private Data Synthesis Methods

Published 2 Feb 2016 in stat.ME | (1602.01063v4)

Abstract: When sharing data among researchers or releasing data for public use, there is a risk of exposing sensitive information of individuals in the data set. Data synthesis (DS) is a statistical disclosure limitation technique for releasing synthetic data sets with pseudo individual records. Traditional DS techniques often rely on strong assumptions of a data intruder's behaviors and background knowledge to assess disclosure risk. Differential privacy (DP) formulates a theoretical approach for a strong and robust privacy guarantee in data release without having to model intruders' behaviors. Efforts have been made aiming to incorporate the DP concept in the DS process. In this paper, we examine current DIfferentially Private Data Synthesis (DIPS) techniques for releasing individual-level surrogate data for the original data, compare the techniques conceptually, and evaluate the statistical utility and inferential properties of the synthetic data via each DIPS technique through extensive simulation studies. Our work sheds light on the practical feasibility and utility of the various DIPS approaches, and suggests future research directions for DIPS.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.