Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive Multiple Model Estimation of Doubly-Selective Channels for OFDM systems (1602.01038v1)

Published 2 Feb 2016 in cs.IT and math.IT

Abstract: In this paper, we propose an algorithm for channel estimation, acquisition and tracking, for orthogonal frequency division multiplexing (OFDM) systems. The proposed algorithm is suitable for vehicular communications that encounter very high mobility. A preamble sequence is used to derive an initial estimate of the channel using least squares (LS). The temporal variation of the channel within one OFDM symbol is approximated by two complex exponential basis expansion models (CE-BEM). One of the Fourier-based BEMs is intended to capture the low frequencies in the channel (slow variations corresponding to low Doppler), while the other is destined to capture high frequencies (fast variations corresponding to high Doppler). Kalman filtering is employed to track the BEM coefficients iteratively on an OFDM symbol-by-symbol basis. An interactive multiple model (IMM) estimator is implemented to dynamically mix the estimates obtained by the two Kalman filters, each of which matched to one of the BEMs. Extensive numerical simulations are conducted to signify the gain obtained by the proposed combining technique.

Summary

We haven't generated a summary for this paper yet.