Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Head Pose Estimation of Occluded Faces using Regularized Regression (1602.00997v1)

Published 2 Feb 2016 in cs.CV

Abstract: This paper presents regression methods for estimation of head pose from occluded 2-D face images. The process primarily involves reconstructing a face from its occluded image, followed by classification. Typical methods for reconstruction assume that the pixel errors of the occluded regions are independent. However, such an assumption is not true in the case of occlusion, because of its inherent contiguous nature. Hence, we use nuclear norm as a metric that can describe well the structure of the error. We also use LASSO Regression based l1 - regularization to improve reconstruction. Next, we implement Nuclear Norm Regularized Regression (NR), and also our proposed method, for reconstruction and subsequent classification. Finally, we compare the performance of the methods in terms of accuracy of head pose estimation of occluded faces.

Summary

We haven't generated a summary for this paper yet.