Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient moment calculations for variance components in large unbalanced crossed random effects models (1602.00346v1)

Published 31 Jan 2016 in stat.ME and stat.CO

Abstract: Large crossed data sets, described by generalized linear mixed models, have become increasingly common and provide challenges for statistical analysis. At very large sizes it becomes desirable to have the computational costs of estimation, inference and prediction (both space and time) grow at most linearly with sample size. Both traditional maximum likelihood estimation and numerous Markov chain Monte Carlo Bayesian algorithms take superlinear time in order to obtain good parameter estimates. We propose moment based algorithms that, with at most linear cost, estimate variance components, measure the uncertainties of those estimates, and generate shrinkage based predictions for missing observations. When run on simulated normally distributed data, our algorithm performs competitively with maximum likelihood methods.

Summary

We haven't generated a summary for this paper yet.