Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bit-Planes: Dense Subpixel Alignment of Binary Descriptors (1602.00307v1)

Published 31 Jan 2016 in cs.CV

Abstract: Binary descriptors have been instrumental in the recent evolution of computationally efficient sparse image alignment algorithms. Increasingly, however, the vision community is interested in dense image alignment methods, which are more suitable for estimating correspondences from high frame rate cameras as they do not rely on exhaustive search. However, classic dense alignment approaches are sensitive to illumination change. In this paper, we propose an easy to implement and low complexity dense binary descriptor, which we refer to as bit-planes, that can be seamlessly integrated within a multi-channel Lucas & Kanade framework. This novel approach combines the robustness of binary descriptors with the speed and accuracy of dense alignment methods. The approach is demonstrated on a template tracking problem achieving state-of-the-art robustness and faster than real-time performance on consumer laptops (400+ fps on a single core Intel i7) and hand-held mobile devices (100+ fps on an iPad Air 2).

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com