Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Witt equivalence of function fields of curves over local fields (1601.08085v2)

Published 29 Jan 2016 in math.RA

Abstract: Two fields are Witt equivalent if their Witt rings of symmetric bilinear forms are isomorphic. Witt equivalent fields can be understood to be fields having the same quadratic form theory. The behavior of finite fields, local fields, global fields, as well as function fields of curves defined over archimedean local fields under Witt equivalence is well-understood. Numbers of classes of Witt equivalent fields with finite numbers of square classes are also known in some cases. Witt equivalence of general function fields over global fields was studied in the earlier work [13] by the authors, and applied to study Witt equivalence of function fields of curves over global fields. In this paper we extend these results to local case, i.e. we discuss Witt equivalence of function fields of curves over local fields. As an application, we show that, modulo some additional assumptions, Witt equivalence of two such function fields implies Witt equivalence of underlying local fields.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.