Papers
Topics
Authors
Recent
Search
2000 character limit reached

A superintegrable model with reflections on $S^3$ and the rank two Bannai-Ito algebra

Published 28 Jan 2016 in math-ph and math.MP | (1601.07642v1)

Abstract: A quantum superintegrable model with reflections on the three-sphere is presented. Its symmetry algebra is identified with the rank-two Bannai-Ito algebra. It is shown that the Hamiltonian of the system can be constructed from the tensor product of four representations of the superalgebra $\mathfrak{osp}(1|2)$ and that the superintegrability is naturally understood in that setting. The exact separated solutions are obtained through the Fischer decomposition and a Cauchy-Kovalevskaia extension theorem.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.