Papers
Topics
Authors
Recent
Search
2000 character limit reached

Font Identification in Historical Documents Using Active Learning

Published 27 Jan 2016 in cs.CV, cs.AI, cs.DL, stat.AP, and stat.ML | (1601.07252v1)

Abstract: Identifying the type of font (e.g., Roman, Blackletter) used in historical documents can help optical character recognition (OCR) systems produce more accurate text transcriptions. Towards this end, we present an active-learning strategy that can significantly reduce the number of labeled samples needed to train a font classifier. Our approach extracts image-based features that exploit geometric differences between fonts at the word level, and combines them into a bag-of-word representation for each page in a document. We evaluate six sampling strategies based on uncertainty, dissimilarity and diversity criteria, and test them on a database containing over 3,000 historical documents with Blackletter, Roman and Mixed fonts. Our results show that a combination of uncertainty and diversity achieves the highest predictive accuracy (89% of test cases correctly classified) while requiring only a small fraction of the data (17%) to be labeled. We discuss the implications of this result for mass digitization projects of historical documents.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.