Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Moving frame and integrable system of the discrete centroaffine curves in R^3 (1601.06530v2)

Published 25 Jan 2016 in math.DG

Abstract: Any two equivalent discrete curves must have the same invariants at the corresponding points under an affine transformation. In this paper, we construct the moving frame and invariants for the discrete centroaffine curves, which could be used to discriminate the same discrete curves from different graphics, and estimate whether a polygon flow is stable or periodically stable. In fact, using the similar method as the Frenet-Serret frame, a discrete curve can be uniquely identified by its centroaffine curvatures and torsions. In 1878, Darboux studied the problem of midpoint iteration of polygons[12]. Berlekamp et al studied this problem in detail[2]. Now, through the centroaffine curvatures and torsions, the iteration process can be clearly quantified. Exactly, we describe the whole iteration process by using centroaffine curvatures and torsions, and its periodicity could be directly exhibited. As an application, we would obtain some stable discrete space curves with changeless curvatures and torsions after multistep iteration. For the pentagram map of a polygon, the affinely regular polygons are stable. Furthermore, we find the convex hexagons with parallel and equi-length opposite sides are periodically stable, and some convex parallel and equi-length opposite sides octagons are also periodically stable. The proofs of these results are obtained using the structure equations of the discrete cnetroaffine curves and the integrable conditions of its flows.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.